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Summary. The use of perturbation-dependent basis sets is analysed with emphasis 
on the connection between the basis sets at different values of the perturbation 
strength. A particular connection, the natural connection, that minimizes the 
change of the basis set orbitals is devised and the second quantization realization of 
this connection is introduced. It is shown that the natural connection is important 
for the efficient evaluation of molecular properties and for the physical interpreta- 
tion of the terms entering the calculated properties. For  example, in molecular 
Hessian calculations the natural connection reduces the size of the relaxation term, 
leading to faster convergence of the response equations. The physical separation of 
the terms also means that first-order non-adiabatic coupling matrix elements can 
be obtained in a very simple way from a molecular Hessian calculation. 

Key words: Perturbation-dependent basis sets - Atomic orbitals - Molecular orbitals 

1 Introduction 

Molecular properties defined as energy derivatives can be calculated efficiently 
using physically motivated perturbation-dependent basis sets (PDBSs). With such 
sets, the basis set limit can be approached much faster than with basis sets that are 
independent of the perturbation. The two most common situations where PDBSs 
are encountered are in calculations of potential energy surfaces, where the atomic 
orbitals are clamped on the nuclei [1-3], and in calculations of magnetic properties 
using London atomic orbitals [also known as gauge invariant atomic orbitals 
(GIAOs) [-4-8]. 

In PDBS calculations the basis set changes as the perturbation is turned on. 
This creates complications in the sense that it is not obvious what particular set of 
orthonormal orbitals should be used to represent the basis set at different values 
of perturbation strength x. In fact, at each x there exists an infinite number of 
orthonormal sets of orbitals. These sets are equivalent in the sense that they span 
the same orbital space, and they are all related through unitary transformations. 
However, in order to carry out the differentiation and calculate the properties, we 
must select exactly one such orthonormal set of orbitals for each value of x. In this 
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way we establish a one-to-one correspondence between orthonormal orbitals ~,, 
at different perturbation strengths. Such a one-to-one correspondence between 
orthonormal orbitals at different values of x is called an orbital connection [9]. 

An infinite number of orbital connections can be defined. The molecular 
properties are of course independent of the choice of connection. However, differ- 
ent connections shift contributions among the various terms entering the expres- 
sion for the molecular property. This may create numerical problems and also 
clutter the physical interpretation of the individual terms. For example, in calcu- 
lations of magnetic properties the choice of connection affects the paramagnetic 
and diamagnetic terms in such a way that the total property is unaffected [10]. The 
paramagnetic term is obtained by solving a set of linear equations to some 
prescribed numerical accuracy, and it is therefore most efficient to use connections 
where this term becomes as small as possible. All connections currently used have 
large paramagnetic contributions, and much effort is thus wasted by evaluating 
a large paramagnetic contribution that is nearly cancelled by a large diamagnetic 
term. Indeed, for large molecules the two contributions can become so large that 
the calculation of magnetizabilities becomes numerically unstable. Similarly, in 
calculations of the Cotton-Mouton effect, where the second derivative of the 
magnetizability with respect to an electric field is calculated, the standard choice 
of connection gives such large paramagnetic contributions that the calculated 
Cotton-Mouton constants become numerically unstable for large basis sets [10]. 

These problems may be avoided completely by a judicious choice of orbital 
connection based on physical principles. In the natural connection introduced in 
this paper, the above numerical problems are eliminated and it also becomes 
possible to give the diamagnetic and paramagnetic contributions a physical inter- 
pretation. For example, in the evaluation of magnetizabilities using the natural 
connection, the paramagnetic contribution includes only terms strictly related to 
the relaxation contribution, originating from the second-order energy contribution 
with the angular momentum operator as perturbation operator. The resulting 
paramagnetic term may therefore for example be used to calculate the paramag- 
netic contribution to the 9 rotational factor. This is not true for other connections. 
Our formulation allows, however, the identification of the true paramagnetic term 
also for a general connection. 

We discuss in this paper the dependence of the creation and annihilation 
operators on x and describe the simplifications introduced by using the natural 
connection. We further examine the second-quantization Hamiltonian for PDBSs. 
In the limit of a complete basis, this Hamiltonian reduces to the one used in 
calculations with ordinary perturbation-independent basis sets. This Hamiltonian 
can therefore be used in time-dependent response function calculations, and fre- 
quency-dependent molecular properties can be determined using perturbation- 
dependent basis sets. Transition matrix elements can be obtained from the residues 
of the frequency-dependent response functions. The presented derivation allows 
the first rigorous derivation of frequency-dependent response functions and their 
residues using PDBSs. 

In the subsequent paper we apply this development to determine the rotational 
strength in electronic circular dichrosim using London atomic orbitals. The rota- 
tional strength is obtained as the residue of the electric dipole-magnetic dipole 
linear response function, and is shown to be gauge-origin independent. Other 
examples where it is advantageous to use the natural connection is for the 
calculation of the non-adiabatic coupling matrix elements. These can actually 
be extracted in a very simple way from a molecular Hessian calculation when the 
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natural connection is used. In a molecular Hessian calculation the size of the 
relaxation contribution is also reduced when the natural connection is used, thus 
improving the convegence of the response equations. Molecular Hessian can 
therefore be obtained more efficiently with the natural connection than with other 
connections. We return to these points in later publications. 

In the next section we discuss different choices of orbital connections and 
introduce the natural orbital connection. In Sect. 3 we describe the creation and 
annihilation operator dependence on the PDBS and derive the operator realization 
of the orbital connection. In Sect. 4 we describe the simplifications that occur in the 
evaluation of overlap and matrix elements when the natural orbital connection is 
used. In the last section we discuss in more detail the implications of using the 
natural connection in molecular property calculations. 

2 Orbital connections 

We assume that the atomic basis functions depend on a vector of external 
parameters x. The vector x will in general contain several components, but for 
notational convenience the individual components of x are not referenced 
explicitly. For  each value of x we have a set of atomic basis functions Zu(x) and a 
basis of orthonormalized molecular orbitals (OMOs). 

~p,,(x) = 3" Zu(x)C,,r,(X). (1) 
,u 

The Hamiltonian and wave functions can be expanded in these OMOs,  and we 
may then proceed to optimize the wave function and the orbitals. Thus, the OMOs 
are in general not identical to the final optimized molecular orbitals at x. However, 
we do require that the OMOs become identical to the optimized molecular orbitals 
for the unperturbed system (x = Xo): 

¢,.(Xo) = Y z,(Xo) cp.  (2) 

To accomplish this we introduce a set of unmodified molecular orbitals (UMOs) 

era(x) = 2 " 'x'  C 7~,~ J urn. (2) 
# 

In general, the UMOs constitute a non-orthogonal basis set 

S,..(x) = (~b,.(x)l~b.(x)> # 6,... (4) 

Provided the overlap matrix S is non-singular, the OMOs may be written as 

0,,(x) = ~ qS,(x) T,,, (5) 
tl 

where the matrix T fulfils the requirement 

T* (x)S(x) T(x) = 1 (6) 

By requiring that T(xo) = 1 we ensure that the OMOs reduce to the UMOs at Xo. 
In the following we will usually omit the argument x except for the unperturbed 
system x = Xo. 

The above conditions are not sufficient to determine T uniquely. By rewriting 
Eq. (6) a s  (S1/2T)*(S1/2T) = 1 we see that SX/2T must be a unitary matrix. 
Therefore, the number of undetermined parameters T fulfilling Eq. (6) equals the 
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number of independent parameters in a unitary matrix. Any unitary matrix can be 
written as exp( - ~c) where ~c is an anti-Hermitian matrix. For real orbitals and real 
matrices, a unitary matrix has n(n - 1)/2 independent parameters, and for complex 
orbitals and matrices there are n 2 undetermined parameters. Here n is the dimen- 
sion of the basis set. In order to define the OMOs uniquely we must therefore 
supplement Eq. (6) with n ( n -  1)/2 and n z additional equations for real and 
complex orbitals, respectively. The choice of these equations thus establishes 
a one-to-one correspondence between the unperturbed molecular orbitals at 
Xo and the OMOs at x. Such a one-to-one correspondence between sets of orbitals 
at different x is called an orbital connection, and the matrix T that determines this 
connection is referred to as the connection matrix. 

From the above discussion we notice that if T fulfils Eq. (6), then for all other 
choices of T' fulfilling Eq. (6) can be generated as 

T ' =  TU, (7) 

where U is unitary. As expected, the specification of U requires n(n - 1)/2 and n 2 
independent parameters for real and complex matrices, which is identical to the 
number of equations that must be supplemented to Eq. (6) in order to specify 
T uniquely. 

A simple way to establish the connection is to make some parts of T vanish. The 
Gram-Schmidt  orthogonalization procedure corresponds to setting 

r ~ , = O ,  m > n ,  
(s) 

T~,, = 0, m>~n, 

where we have written T as a sum of a real and an imaginary part T = T ~ + iTL 
Although the Gram-Schmidt  connection has been used in calculations [11], it 
lacks physical motivation. In particular, even in cases where )&(Xo) and Z,(x) span 
the same space, the OMOs O,,(Xo) and Ore(x) will differ. This introduces unphysical 
terms when operators are expanded in the OMO basis. We return to this point 
later. 

We now consider a group of connections where we augment Eq. (6) with the 
requirement that the functions ¢,,(x) should be as similar as possible to some set of 
target functionsf,,(x). In analogy with Murrell [12] and Carlson and Keller [13] 
we therefore require that T minimizes the difference measure 

~(x)  = ~ II f,,(x) - ~',,(x)ll 2 
m 

2 
m 

Z 
m 

2 
m 

< f r o ( x ) -  ~ .~ (x ) l f , . ( x )  - Ore(x)> 

= [<f , . ( x ) l f , . ( x ) )  + 1] - ~ [(f , . (x)]qJ, . (x))  + @' , . (x) l f , . (x ) )]  
m 

= E < £ ( x ) l £ ( x ) >  + 13 - ~ E(WT)~,. + (WT)Z~3 (9) 
m 

where we have introduced the matrix 

w~.(x) = ( g ( x ) l ~ . ( x ) ) .  (10) 

We assume that W(x) is non-singular. 
The first-order change in ~(x)  with respect to changes in T(x)  can be written as 

a~ (x )  = - ~ [(W3T)m,, + (WaT)~,,3. (11) 
m 
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Using an exponent ia l  pa ramet r i za t ion  of the unitary var ia t ion of T, we obtain  

6 T =  T 6 U =  - T~¢, (12) 

where s: is an t i -Hermi t ian .  Insert ing this expression in Eq. (11) we obtain  

~ ( x )  = Tr[-(WT)K - • (WT)*]  
(13) 

= Tr  [ ( W T )  -- (WT)+]  K. 

The  mat r ix  t¢ can be writ ten as K = ~¢R + il¢l, where K R is a real ant isymmetr ic  
matr ix  and K x is a real symmetr ic  matrix.  Expans ion  of the variat ions in terms of 
the independent  pa ramete r s  of t¢ R and t¢I gives 

6 ~ ( x )  = T r [ W T -  (WT)* ]  t¢ R + i T r [ W T -  (WT)*]  t¢ ~ 

= ~ [ ( W T ) m ,  -- (WT)+m, - (WT) ,m -4- (WT),+m] KR,, 
m ? > n  

+ i ~ [ (WT) , , ,  ( W T ) ~ ,  + ( W T ) , , ,  (WT),*,,] x - -  - -  ~ t l r t l  

m > ' n  

+ Z E(WT)m,. ' ' - -  (WT)mm] Kmm. (14) 
m 

Requir ing tha t  the f irst-order change in ~ vanishes for any choice of K R and K ~, we 
obtain  the Hermi t ic i ty  relat ion 

W T  = T + W t. (15) 

In order  to obta in  a closed expression for T we first write 

T =  W - ~ M .  (16) 

Insert ing this expression in Eq. (15), we find that  M must  be Hermit ian:  

M = M + . (17) 

The  Hermi t i an  mat r ix  M m a y  now be determined by inserting Eq. (16) into the 
or thogonal i ty  relat ion (6). We obta in  

M ( W  +) - 1S W -  1M = M ( W S  - 1 W +)- 1M = 1, (18) 

which has the solut ions 

and therefore 

M = +_ (WS - 1 W * )  ~/2  (19) 

T =  +_ W - I ( w s - 1 w t )  1/2. (20) 

We have thus identified two choices of T that  correspond to s ta t ionary points  of 9 .  
Since we require T(xo)  = 1, we choose 

T = W - I ( W S  -1 Wt)  1/2. (21) 

It  can be shown that  this choice corresponds  to a min imum,  while 
T = -- W -  1 ( W S -  1 W t ) l / 2  maximizes  9 .  

By choos ing  different target  functions, different connections can be generated. If 
we require the O M O s  ¢,,(x) to be as similar as possible to the U M O s  ~,,(x) we set 

f , , (x)  = ~b,,(x). F o r  this choice of fro(x), W = S, so Eq. (21) reduces to 

T = S -  1/2. (22) 
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This yields a symmetric connection matrix T and it is therefore called the sym- 
metric connection. This connection can also be obtained directly from Eq. (6) by 
requiring T to be symmetric. However, the symmetric connections has - just like 
the Gram-Schmidt  connec t ion-  no physical significance since OMOs are obtained 
using the unphysical UMOs as target functions. In particular, the OMOs ~"(Xo) 
and Om(X) differ even when the basis sets span the same space. The symmetric 
connections has been used by a number of workers [14--16]. 

A more useful connection is obtained by requiring the basis functions ~0"(x) to 
be as similar as possible to the unperturbed molecular orbitals at Xo. The target 
functions are then given by f,.(x) = ~b,.(Xo) = ~,.(Xo) and the matrix W reads 

W,.. = (4'"(Xo)14~.(x)), (23) 

so the matrix we require to be Hermitian is 

A,.. = (WT) , . .  = (~m(Xo) l¢ . (x ) ) ,  (24) 

This connection minimizes the change in the basis functions going from Xo to x. In 
particular, we may show that if the two sets of basis functions 7~,.(Xo) and 7.,.(x) 
span the same space, we obtain Ore(x) = ~b"(Xo), so that the OMO functions do not 
change. This is a very desirable feature, which is only obtained with this connec- 
tion, and we will therefore refer to this connection as the natural connection. To 
see this, we use the above assumption to expand the UMOs at x in terms of the 
UMOs at Xo: 

~"(x) = Y~ ~,,(xo)L.", (25) 
M 

Note that the matrix L (x) is not unitary since the UMOs at x are non-orthogonal. 
The matrices W and S can be written as 

W". = (qS.,(Xo)J~b.(x)) = L" . ,  
(26) 

& .  = ( 4)"(x )14).(x ) 5 = (L ' L )m., 

so the connection matrix Eq. (21) becomes T = L -  1, and the expansion in terms of 
UMOs is 

O"(x) = Y~ ¢.(x) 7".,. 
n 

= Z 4~,{Xo)(U.-1)," 
v (27) 

= ,~"(xo) 

for a complete basis. For  finite basis sets, the natural connection also has some 
unique features. Consider the projection of ~,,(x) onto the space spanned by 
~'"(xo): 

~ ( x )  = y,  ~ . (xo)  (~.(xo)W~"(x)> 

" (28) 
= Z ~.(Xo)A."(~) .  

n 

Through first order in 6x = x - Xo we obtain 

~b:(x) = ~t"(x°)-q- ~ ~tn(x°) [~---xAn"(x)16x + (29) 
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Since the matrix A is Hermitian for all x, the matrix (O/ax)A is also Hermitian. 
But from the orthogonality relations (O,(x)10,,(x)) = 6,,, it follows that (a/Ox)A is 
anti-Hermitian. The matrix (O/Ox)A must therefore vanish: 

I~x Anm(X)I = (~Im(Xo) ~'~ ~In(X)) = O (30) 

and we see that to first order in the perturbation the projected differentiated OMOs 
are identical to the unperturbed orbitals 

~,~(x) = ~m(x0) + O(ax2). (31) 

The natural connection thus ensures that the OMOs for a general x are as similar 
as possible to the corresponding unperturbed orbitals. It will be shown in Sect. 
4 that this ensures a physically reasonable expansion of the operators used to 
calculate derivatives of molecular energies and properties. In order to use the 
natural connection in the calculation of derivatives of wave functions and proper- 
ties, it is necessary to obtain derivatives of T. The first and second derivatives of 
T are given in Appendix A. 

3 Second-quantization representation of connections 

For our discussion of second-quantization operators [17-19] it is convenient to 
introduce a complete orthonormal orbital space, consisting of the finite set of 
OMOs and an associated orthogonal complement set of orbitals. In the following 
we will refer to the orbitals spanning the complement as the orthogonal com- 
plement orbitals (OCOs). We distinguish these orbitals by using indices m and n for 
the OMOs and u and v for the OCOs. Indices p and q are used for unspecified 
orbitals belonging to either the OMO space or its complement. An arbitrary 
orbital may now be expanded exactly in these orbitals: 

4) = ~, cpOp(x) = Y, c,,O,.(x) + ~ c.Ou(x). (32) 
p m u 

In particular, complete orthonormal basis sets at different x are related by a unitary 
transformation 

@(x) = ~ qJq(Xo) Uq~,(x), (33) 
q 

where 
U* (x) U(x) = U(x)U* (x) = 1. (34) 

An explicit parametrization of the unitary matrix U(x) is given by 

U(x) = exp [ - b(x)], (35) 

where b(x) is an anti-Hermitian matrix 

b* (x) = - b (x). (36) 

From Eq. (36) we see that there are p2 independent parameters in b(x), where P is 
the dimension of the matrix. We may for example choose the complex numbers 
below the diagonal and the imaginary numbers on the diagonal as the free 
parameters. The remaining elements are obtained from Eq. (36). 
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Analogously, we may now expand the creation and annihilation operators at 
x exactly in terms of the operators at Xo: 

a~ (x) = ~ a~ (Xo) Uqp(X), (37) 
q 

ap(X) = ~ aq(xo)U*(x). (38) 
q 

An operator representation of the unitary transformation of the creation and 
annihilation operators can be written in terms of the unitary operator U(x) (see for 
example [20]): 

a*p (x) = 0 (x) a*p(x0) U * (x), (39) 

ap (x) = 0 (x) ap (Xo) 0 i" (x), (40) 

where 

U(x) = exp [ - /~(x)],  (41) 

/~(x) = ~ bpq (x) ap* (Xo) a, (Xo) (42) 
pq 

and the parameters bpq(x) are the elements of the anti-Hermitian matrix b(x). This 
unitary operator may then also be used to carry out unitary transformations of 
occupation number (ON) vectors in Fock space: 

IN (x) > = 0 (x) lN (Xo) 5. (43) 

The purpose of this section is to study the form of the anti-Hermitian operator/~(x) 
corresponding to the unitary transformation of OMOs at different values of the 
perturbation strength x. We will not derive an explicit form for b(x), rather we are 
interested in the expansion of the operator around Xo: 

where 

b ( x )  = ~(0)_{_ ~(1)~5 X or - ½ t ~ ( 2 ) ~ x 2  ..{_ " "  , (44) 

~)(k) = ~ b~kg @(Xo)aq(Xo). (45) 
pq 

Once the detailed form of this expansion is known, we may calculate the unitary 
operator U(x) to a given order and carry out the associated transformations of 
operators and states given by Eqs. (39), (40), and (43). 

Differentiating Eq. (35) and identifying terms to the same order in x, we obtain 
to second order: 

b (°) = 0, (46) 

b (1)= -- U (1), (47) 

b (2)= - U(2)+ U(1)U (I). (48) 

We have here used the fact that for the unperturbed system 

U(xo) = Um)= 1 (49) 

to simplify the expressions. Thus, the perturbed operator given by Eq. (44) may be 
calculated from the derivatives of the unitary matrix U(x). 

Differentiating the unitary condition given by Eq. (34), we find that the 
Hermitian part of the nth derivative of the unitary matrix may be calculated from 
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lower-order derivatives. In particular, for first and second derivatives we obtain 

U (1) + U (1)* 
U('~ = = O, (50) 

n 2 

U (2) + U (2)* 
tl (2) - = U m U  m, (51) 
--n 2 

where the subscript H indicates the Hermitian part of U. The first derivatives of 
unitary matrices are therefore anti-Hermitian. Using Eq. (51), we may now write 
Eq. (48) in the following two equivalent ways: 

b (z) = - -  U(2)  + U ( 1 ) U  (1) 

1 - -  V ( 2 ) t .  ] (52) = _ [ u  = 2 ) ,  

where the subscript A indicates the anti-Hermitian part of U. The last expression 
displays more clearly the anti-Hermitian nature of the matrix b ~2). Of course, by 
differentiating the anti-Hermitian condition given by Eq. (36) we see that b (") is 
anti-Hermitian to all orders. 

Beforeconsidering the detailed form of the first and second derivatives of the 
operator b(x), we note that the matrix b(x) may be partitioned in blocks corres- 
ponding to the OMOs and OCOs: 

b (x) = I F  (x) - G t (x)] (53) 
La(x) X(x) ]" 

To first order in Eq. (35), F(x) describes transformations among the OMOs, K(x) 
describes transformations among the OCOs, and G(x) corresponds to transforma- 
tions mixing OMOs with the OCOs. Since we are not concerned with internal 
transformations among the OCOs, we may simplify our expressions by requiring 

K(x) = 0 (54) 

for all values of x. This choice does not in any way restrict our freedom in 
describing the OMOs, as can be shown by group theoretical arguments. 

Further simplifications arise for the natural connection. The unitary matrix 
U(x) may be written in the following blocked form: 

U( x ) =FA( x )  A(x)]  (55) 
Lm(x) a(x)j' 

where 
A,.. (x) = @m(xo)l~0.(x)), (56) 

• = (57) 

Amy(x) = (~m(XO)lt~v(X) ) ,  (58) 

£2,,~(X) = (~u(Xo)I~(X)). (59) 

For natural connections A(x) is Hermitian and we may also require I2(x) to be 
Hermitian: 

.CA, = "°a, (60) 

n e ~ t  = nc~,~, (61) 
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where the upper left superscript nc indicates the natural connection. As discussed in 
Appendix B, a unitary matrix with Hermitian diagonal blocks may be written as 
the exponential of an anti-Hermitian matrix with zero diagonal blocks. Thus, for 
the natural connection we may write 

(62) 

To summarize, the anti-Hermitian matrix b(x) may be written in the form of Eq. 
(53) with K(x) equal to zero. For the natural connection F(x) vanishes [E%(62)]. 

We now return to the problem of evaluating the derivatives of the b(x) in 
Eq. (42). The first derivative is given by 

(63) 

where we have used the fact that K(x) vanishes to all orders to simplify the 
summation: 

(64) 

From Eq. (47) we obtain 

where we have also used the fact that U m is anti-Hermitian. We now expand the 
derivatives of the OMO creation operators in the unperturbed OMO and OCO 
creation operators: 

(66) 

It is convenient to decompose these derivatives in components spanned by the 
OMOs and by the OCOs: 

where 

(67) 

(68) 

(69) 

The annihilation operators are partitioned in the same manner. We may now write 
Eq. (65) as 

We see that the first derivative of the anti-Hermitian/~ operator may be written as 
sums over undifferentiated and differentiated OMO creation and annihilation 
operators. 

Equation (70) is quite general and we have made no assumptions about the 
connection. In the natural connection, the O M O - O M O  block ofb (x) vanishes and 
we have the following simplification: 

(70) 

(71) 
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and hence 

nc~(1) E n(1)* n(O) -(O)t -(1) "m'"m +~Um . (72) = - -  • m . L  

m m 

Thus, in the natural connection the only surviving terms are those mixing OMO 
orbitals with their projected derivatives in the orthogonal complement. 

We now turn to the second derivatives, which may be written in the form 

/~(2) ~b(2)a , l  x , , , (2) , ,,, mt o)a, txo) + ~ b,. a , (xo)a,(xo)  + ~ (2) , = b,u a,(xo)au(Xo). (73) 
m n  u n  n u  

We use the following identification: 

b(2) = ± rrr(2) (2)* 1 
- -  2 L V  mn - -  Unto  ~, 

(74) 
b(2) = _ 1-/(2) + E T?(1)TI (1)  U~I ~ U~I v Up ~ pn 

P 

if(2) if(l) Tf(1) = - v u ,  + Z  (75) v u m  ~ m l l  

m 

b(2)= _ /.~(2)* = U ( 2 ) *  - - E  T [ ( 1 ) T [ ( 1 )  (76) 
n u  ~ u n  u n  ~ m u  ~ n m  • 

m 

Here Eq. (74) follows directly from Eq. (52), while Eq. (75) follows from Eq. (52) and 
from the relationship 

U (1) _ h(1) u~ = vu~ = 0 (77) 

and in Eq. (76) we have used the fact that U 1 is anti-Hermit*an [see Eq. (47)]. 
Inserting Eqs. (74)-(76) into Eq. (73) we obtain 

~(2)= _ _ 1 ~  (2) * 1 (2)* * 
2 ,.. U. , .a . , (xo)a . (xo)  + -2- m.~U"m a,.(Xo)a.(Xo) 

- - E  (2) t" (2)* * Uu, au(xo)a,(xo) + ~ U . ,  a,(xo)au(xo) 
u n  u n  

+ E utl) (1) , U, , .a , (xo)a , (xo)  ~ , r m  (1) * ~u,.  -- ~,,,, Umnan(Xo)au(Xo) (78) 
u m n  u m n  

We now introduce the derivatives given by Eqs. (68) and (69) and obtain 

1 E 1 ~ ( o ) * ~ ( 2 )  /~(2) = _ n(2)*a~ ) + ~  u,, "~I 
2 m -roll 

(2)* (0) (2) 
- - E a r n _  am + E n  (O)t - , n  a , .  ± 

ra  o l  

x---, (1),a(1) n(1)t ~(1) --&a.,i , . ± + ~  (79) 
m m 

Again, the operator is expressed entirely in terms of OMOs and their derivatives. 
For the natural connection, many of the terms vanish because of Eq. (71), and we 
obtain the simple expression 

x-" _(o), ~(2) (80) n c g ( 2 )  = -- E ~mr~(2)*~(O).k ~m "~- /'~ Um "mi 

m m 

which may be compared with the analogous expression for the first derivative given 
by Eq. (72). 

In the expressions developed for the derivatives of/~(x) there is no explicit 
reference to the OCOs. Indeed, no such information is ever needed, since in actual 
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calculations the/~(x) operator is always sandwiched between bra and ket states and 
we only need to be able to determine the ant±commutators between the creation 
and annihilation operators entering/~(x). For example, in the natural connection 
the only new non-vanishing ant±commutators that arise to first order in the 
perturbation are those between the projected creation operators "mJ_"(1)t and the 
projected annihilation am_L(1) operators. These are easily obtained as 

[_ ( i )  ~(1)1 - ( i )  ,/,(1)\ (81) 
U m l ,  U n ± j +  = <l[Am.l. ~ , 1 1 ,  

where we have introduced the projection of the differentiated OMOs onto the 
orthogonal complement: 

,/.,") = r T " )  - ( 8 2 )  
n 

Inserting this expression into Eq. (81) we obtain 

[ . . )  ( 1 ) 1 +  = _ ( 8 3 )  t~m±~ a n ± A  

which for the natural connection simplifies to 

[nc,.7(1) nco(1)-I  I//(1) I/l(l)k~ (84) 
~m±~ ~ n 2 A +  ~ <~'m "rn / 

since the first derivative OMOs have no projection in the unperturbed OMO space. 

4 Overlaps and matrix elements 

In this section we first examine overlaps between ON vectors at different values of 
x and show how the connection operator 0 can be used to obtain the results in 
a straightforward manner. Next we analyze the perturbation dependence of sec- 
ond-quantization operators and expectation values. Consider the overlap between 
two ON vectors at the same x: 

<g(x)[M(x)> = (N(x0)[ 0 t O[M(xo)} 

= <g(xo)lM(xo)>. (85) 

Hence, the perturbation dependence of the matrix element disappears. Consider 
now a matrix element <N(xo)[M(x)> where only IM(x)> depends on x. In the 
natural connection we obtain 

<g(xo) lM(x))  = <g(xo)[ OlM(xo))  

= <N(xo)lM(xo)> - {N(xo)lb(')lM(xo)>,~x 

- ½ [(N(xo)l['/2)lM(xo)> 

- <g(xo)l~m~(1)lM(xo)>]~x 2 + O(~x 3) 

-- (g(xo)lM(xo)> 

1 
- - 2  ~ <N(xo)lam(xo)am±a.±* (1) . ) t  a.(xo)[M(xo)>6x 2 + O(6x 3) 

mn 

= <N(xo)lM(xo)> 

1 
~ < N (xo)[a~(xo)a.(xo)[M (xo) > k",.±,r"(1) ~,.±'~(i)tlJ + fiX 2 + O(fiXS). 

2 mtl 
(86) 
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To obtain Eq. (86) we have used the fact that the expectation values ofb m and f(2) 
given in Eqs. (72) and (80) vanish. For the natural connection, the first derivatives 
vanish, 

a > . . . .  c~---~(N(xo)lM(x) = 0, (87) 

and the second derivatives are 

c~xZ (N(xo)lM(x)>l . . . .  = - ~,., (N(xo)la~(xo)a,(xo)lM(xo)> \ c~ x c~x /" (88) 

Equations (87) and (88) can be used to obtain the contribution from the perturba- 
tion dependence of the creation and annihilation operators to non-adiabatic 
coupling matrix elements [21]. We note that this contribution vanishes for first- 
order non-adiabatic coupling matrix elements in the natural connection. Matrix 
elements @N(x)/c3xl OM(x)/~?x> can be similarly be obtained as 

ON(x) ~M(x)\ 
~l------5-~-x / = _ 2(N(xo)lfmfmlM(xo)> 

= 2 ~ < N(xo,la~(xo)a,(xo)lM(xo,> (~-~ (89) 

Such matrix elements are for example needed for the evaluation of vibrational 
circular dichroism (VCD) tensors [22]. If a general connection had been used, the 
above expressions would become significantly more complicated. 

Equation (87) reflects an important property of the natural connection: the 
projections of the ON vectors in the space spanned by the unperturbed orbitals do 
not change to first order in the perturbation. Since our molecular orbital basis is 
finite, we cannot hope to make the ON vectors independent of the perturbation. 
However, we do have some freedom in choosing our basis set at x, and in the 
natural connection we use this freedom to make the changes in the ON vectors as 
small as possible as seen from Eq. (87). 

We next examine operators and expectation values for PDBSs, and their de- 
pendence upon connections. For simplicity we will restrict our attention to one- 
body operators. The generalization to two-body operators is straighforward. The 
first-quantization one-body operator he(x) has the representations h(xo) and h(x) 
at x and Xo: 

h(xo) = ~ hm,(xo)a~(xo)a,(xo), 
"" (90) 

h(x) = ~ hm,(X)a*,.(x)a.(x). 
m n  

Here hm.(X) are the integrals over the OMOs Ore(x): 

h,,,(x) = f @*(x)h(x)tp,(x) dz (91) 

and h,,,(Xo) are the integrals over the OMOs @~(x0). 
The operator h(x) depends upon x through the OMOs @re(x), through the 

explicit dependence of the operator hC(x), and through the creation and annihila- 
tion operators a~(x) and a,(x). In the limit of a complete basis, the x dependence of 
the OMOs tp,,(x) must cancel the x dependence of the creation and annihilation 
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operators a*m(X) and a.(x), leaving only the explicit x dependence of the first- 
quantization operator he(x). This can be demonstrated as follows. For a complete 
basis we may use the unitary expansions given by Eq. (33) for the orbitals and Eqs. 
(37) and (38) for the creation and annihilation operators. Inserting these expansions 
in Eq. (90), we obtain 

~(x) * = Urn,., t)*,(xo)h(x)t),,(xo)dr U.,. ~ a~,,U,.,,,.a.,,U.*,. 
m, m '  ' m "  n"  

[UU*],.,,,., [UU*].,,. ,  [tp*(xo)h(x)~.(Xo) dz a~,,a.,. Y 
m ' , m "  n '  n "  d 

= Z 6,.,,,.,6.,,., [O*(xo)h(x)O.(Xo) dza~,,a.,, (92) 
t . ' , m "  n '  n "  d 

which gives us the required result 

h(x) = ~ [ tp,.(xo)h(x)tp*(Xo) dr a*m(Xo)a.(xo). (93) 
m , n  d 

Comparing this expression with Eq. (90), we see that for a complete basis set at the 
perturbation dependence of the OMOs and the creation and annihilation oper- 
ators cancel out. 

In calculations of derivatives 
ties, the operator and the wave 
involved matrix elements are 

(N(x)[/~(x)l M(x)) = 

From this we conclude that the 

(N (x) l/~(x) l M (x) > -- 

of the electronic energy or/and electronic proper- 
functions all refer to identical values of x so the 

~" hm,(x)(N(x)la~(x)a,(x)lM(x)) 
m,n 

~'. hm,(x) ( N (xo) l (J * (x) (J (x)a*~(xo) U * (x) 
m .  

x ~J(x)a,(xo)0 *(x)(J(x)lM(xo)). (94) 

transition expectation value may be calculated as 

hm,(x)(N(xo)la~(xo)a,(xo)lM(xo)). (95) 
m , .  

For the purpose of calculating adiabatic expectation values and transition expecta- 
tion values, we may thus neglect the perturbation dependence of the creation and 
annihilation operators as well as the ON vectors. This is the case, for example, in 
the calculation of molecular gradients and Hessians, shielding constants, and 
magnetizabilities. For such adiabatic properties we may consider 

0 *h(x) U = ~ hm,(X)a~(xo)a.(xo) (96) 
mn 

an effective operator to be used with the ON vectors I M(x0)). It should be noted, 
however, that the operator U*/~(x)D does not have any physical significance 
except when sandwiched between unperturbed ON vectors. For example, although 
the operator h(x) is independent of the choice of connection, the transformed 
operator U */~(x) U is not connection-independent. We will return to this aspect in 
the next section. 

In derivative theory, the operators are expanded in orders of 6x. The expansion 
of the full operator h(x) and the operator with perturbation dependence 
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only through the integrals, 0*/~(x)O, can be written as 

]~(X) = ff/(Xo) "[- ff/tl]6x -']- ½ ~[2] ~SX~)X, 

O*h(x3 0 = h(xo) + hU' 6x + ½ h(2)cSx6x. (97) 

The operators/~< are independent of connection and will in the limit of a complete 
basis become 

~t,l = 2 O*(xo) O,(xo) dz a~(xo)a,(xo). (98) 
m , n  

The operators/7(n) depend upon the actual connection and will in general not be 
given by the right-hand side of Eq. (98) in the complete basis set limit. 

5 Response properties 

To illustrate how connection-dependent terms occur in derivatives of energies and 
how the true static and response terms can be obtained, we will consider time- 
independent response theory for variational wave functions. We assume that for 
x = xo a proper optimized wave function [O(xo)) is given, and write the wave 
function for a general value of x as 

I O (x)) = exp [ -/~(x)] exp [ - (9 (x)] I O (x0) 5. (99) 

The operator exp[ -/~(x)] changes the OMOs, and the operator exp[ - (9(x)] 
changes the electronic parameters describing the wave function. For an SCF wave 
function (9(x) is an anti-Hermitian one-electron operator defined in terms of the 
creation and annihilation operators at Xo, allowing optimization (relaxation) of the 
molecular orbitals. For a CI wave function (9(x) is an anti-Hermitian operator 
allowing relaxation of the CI coefficients. Wave functions where orbitals and CI 
coefficients both relax requires a double exponential formalism which is a trivial 
extension of the following. 

The parameters of exp[ - (9(x)] are expanded in powers of cSx and are deter- 
mined by requiring that the following energy is stationary: 

E(x) : <(9(x)IH(x)l O(x)> 

= (O(xo)l exp[(9 (x)] exp [/~(x)] H(x) [ - b'(x)l 

x exp [ - (9 (x) ] I O (Xo) }, (100) 

where/l(x),  is the perturbation-dependent Hamiltonian. It is convenient to con- 
sider exp [b(x)] H(x)[ - b(x)] to be an effective Hamiltonian, since the creation 
and annihilation operators then become perturbation-independent. This corres- 
ponds to moving a part of the wave function response into the Hamiltonian 
operator. We will soon return to the consequences of this. Expanding exp [b(x)] H(x) 
[ - b(x)] according to Eq. (97) gives through second order in 6x 

E(x) = (O(xo)I/~10(xo)> 

+ <O(xo)I/T')I O(xo)> & 

+ (<O(xo)In~2)l O(xo)> 

+ <O(xo)l [(9%/~(1~]10(xo)> 

+ ½ (O(xo)l [(9 m [(9(1),ffI]]lO(xo)))ax6x. (101) 
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In the above expansion we have used the fact that [O(xo)) is optimized with re- 
spect to variations of (9 and assumed the Brillouin conditions (O(xo)[ 
[at,, (xo)a,(xo),/~][O (x0)) = 0 to simplify the terms. The first-order terms do not 
include any contribution from wave function changes. The second-order terms 
contain the static term (O(xo)[/~(1)[ O(xo)) and a response term arising from the 
first-order correction to the wave function. 

The above s ep~a t iono f  static and response terms is with respect to the effective 
Hamiltonian exp [ b(x)] H (x) [ - /~ (x ) ] .  As discussed above, this operator contains 
a part of the wave function response and does not correspond to any physical 
perturbation. This rearrangement does not change the total second-order energy, 
but for cases where the static and the response terms each have a physical 
interpretation it is very useful to have a formalism where the true static and 
dynamic terms can becorrectly obtained. This is achieved by using the physically 
correct Hamiltonian H(x). Repeating the above derivation for this partitioning of 
wave function and Hamiltonian one obtains the true static contribution to a 
second-order energy as (O (Xo) I~q [21l O (Xo)), where/~ [2] is the second-order expan- 
sion of H (x). From Eq. (97) we obtain the relation between the true static term and 
expectation values of/4<~) and/~2) :  

(O(xo)l/~E2110(xo)) = ( O ( x o ) l f l < 2 ) i O ( x o ) )  

- <O(xo)l  I-~ (2>,/~310(xo)> 

- 2 (O(xo) l  [-~<x),/~m] IO(xo)> 

+ (O(xo)l[~)(1),[f)~x)_ft]]lO(xo)). (102) 

Assuming the Brillouin conditions are. fulfilled, the term (O(xo)I [/~ (2),/4] IO(xo)) 

;ani2h~Sg Iafn ~th ~h n tteUrrmal (Cg~xno~t~(n), ~[; u~?~] ](]O((~xo~[bg(~2H~)w]20~xO~{o lSasatl~; 

basis set increases. In this sense does the natural connection allow us to identify 
(O(xo)l/~2>l O(xo)) as the static term. If other connections are used, one must 
explicitly calculate all the terms of the left-hand side of Eq. (102) in order to obtain 
the true static term and the corresponding true response term. 

6 Discuss ion 

Within the second-quantization response formalism, calculations of molecular 
properties using PDBSs start by defining an orbital connection, i.e. a one-to-one 
correspondence between sets of orthonormal orbitals for different values x of the 
perturbation strength. An infinite number of connections can be constructed. This 
freedom can be used to identify an orbital connection, the natural connection, that 
gives a physical separation of the individual contributions to molecular properties. 
Such a physical separation is not obtained with any of the other orbital connec- 
tions. To be more specific, the modified Hamiltonian in Eq. (96) is the one that is 
used in PDBS calculations of molecular properties calculations. This modified 
Hamiltonian is connection-dependent and contains, in general, contributions from 
basis set changes (the so-called reorthonormalization contributions) even in the 
limit of a complete basis set. When the natural connection is used, these contribu- 
tions vanish. 

Consider, for example, the calculation of magnetic properties using London 
[1] orbitals. The full derivative of the Hamiltonian, dH/dB =/~ , becomes the angular 
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momentum operator in the limit of a complete basis, regardless of the choice of 
connection. However, the operator ~1), which is the one used in magnetic property 
calculations, only converges towards the angular momentum operator in the 
natural connection. The magnetizability is a sum of two terms, a static term 
called the diamagnetic term (01Xo)l/1(2)[ 0(x0)) and a response term called the 
paramagnetic term <0(Xo)(1)l/4(1)F0(Xo) > where 10(Xo)(1)> is the first-order 
correction to the wave function. Only the sum of these terms is connection- 
independent. By changing the connection one can move contributions from one 
term to the other. In the natural connection, the paramagnetic term has a physical 
interpretation since /~1) converges towards the angular momentum operator. 
For finite basis sets the true diamagnetic term can be obtained from Eq. (102) 
and the true paramagnetic term can then be obtained as the difference between 
the total magnetizability and the true diamagnetic term. In connection 
with magnetic shieldings, various identifications of the diamagnetic term have 
been suggested. Ditchfield [5] identified the diamagnetic term as the expectation 
value of the operator in Eq. (98). While this is correct in the full basis set limit, 
it is a dubious procedure for finite basis sets. Wolinski et al. [7] used the 
expectation value of the second derivative of the operator in the primitive basis, i.e. 
the second derivative of (Zi,(x)l h(x)[ 7~(x)) as the diamagnetic term. This identi- 
fication does not go into the correct limit when the basis set goes towards 
completeness. 

The physical interpretation of the paramagnetic and diamagnetic terms is 
important as the paramagnetic term containing the angular momentum operator 
represents electronic contribution to the 9 rotational factor. This electronic contri- 
bution to the 9 factor can therefore be obtained rather straightforwardly with 
London atomic orbitals if the natural connection is used. For a general connection, 
the correction terms indicated in Eq. (102) must be calculated explicitly. The 
paramagnetic term is obtained by solving sets of linear equations. Numerical 
accuracy may therefore be lost if the paramagnetic term is large as may happen if 
the orbital connection is not chosen carefully. The optimal choice of orbital 
connection is of course the natural connection where the paramagnetic term does 
not contain reorthonormalization contributions. 

We point out that when the natural connection is used, the Hamiltonian in 
Eq. (96) can be used to obtain time-dependent response functions and thus to 
calculate frequency-dependent molecular properties and their residues using per- 
turbation-dependent basis sets. In the subsequent paper we describe how the 
rotational strength in circular dichrosim can be obtained as a residue of the electric 
dipole-magnetic dipole frequency-dependent response function using London 
atomic orbitals. 

It should finally be noted that the original formulation of derivatives [23] 
does not introduce an intermediate OMO basis; the response equations are 
solved directly in the UMO basis. Working directly with the UMO basis does not 
alleviate any of the problems analyzed above. In particular, the original 
approach does not lead to a formalism where the true static and response terms 
come out naturally, and it can therefore not be used for an analysis of these 
terms. 
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Appendix A 

The equations defining the natural connection are 

T t  S T  = 1, 
(103) 

W T =  T t W  t. 

In order to obtain analytical derivatives of wave function and expectation values it 
is necessary to determine an order expansion of the connection matrix T. The 
explicit form of T [Eq. (21)] can be expanded directly, but it is simplrr to use the 
above equations directly. By expanding T and W in orders of 6x, the first- and 
second-order equations become 

T (1) -{- T m* + S m = 0, (104) 

T (~) + W (1) = T(1) t + W (1)f, 

T (2) + T (2]* + S (2) -+- 2T(~)*S ~1) + 2T [1)t T (x) + 2S(a)T m = 0, (105) 

T (2) ..}_ W (2) + 2WCX) T (1] = T(2) f -~ W(2) t + 2T(1)t W <~)t. 

Using the fact that W a) + W (x)t = S m, the first-order term of T becomes 

T i n =  _ W m .  (106) 

The second-order term is identified from Eq. (105) as 

T (2) : - - ½ S  (2) - - ½ ( m  (2)t - -  W (2)) -}- 2 W ( I ) W  m + W(1)t W (I). (107) 

Higher-order terms can be obtained in a similar way. 

Appendix B 

The exponential of an anti-Hermitian matrix with zero diagonal blocks can be 
expressed as 

0 r cos, ,  xp(E  
where the Hermitian matrices A and B are given by 

A = ( M  ' M )  l/z, (109) 

B = ( M M  ,)1/2. (110) 

To obtain Eq. (108) we have used the Taylor expansions of the exponential, cosine 
and sine functions. We see that the unitary matrix has Hermitian diagonal blocks 
and that the off-diagonal blocks are the anti-Hermitian adjoints of each other since 

M s i n ( A ) A  -1 = _ B -  ~ sin(B)M. ( I l l )  

Moreover, any unitary matrix with Hermitian diagonal blocks may be written as 
the exponential of an anti-Hermitian matrix with zero elements in those blocks of 
the anti-Hermitian matrix in which the unitary matrix is Hermitian. This is in 
agreement with the fact that 2PQ parameters, where P and Q are the dimensions of 
the zero blocks, are required in order to describe an anti-Hermitian matrix with 
zero diagonal blocks as well as a unitary matrix with Hermitian diagonal blocks. 
To see the latter, recall that the number of parameters required in order to describe 
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a unitary matrix of dimension P + Q is (P + Q)2. If we require the corresponding 
diagonal blocks of the unitary matrix to be Hermitian, we must subtract p2 
conditions for one of the blocks and Q2 for the other, giving a total of 2PQ 
parameters. 
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